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Abstract 

The paper presents a new way to reduce the size of the training set without significantly decreasing the classification 
quality. The effectiveness of the proposed algorithm is examined for the class sensitive neural network (CSNN) presented in 
WCNN93 by Chen and You (t993) although the same approach can be applied also to other kinds of classifiers. Ten 
different experiments with a very large remote sensing data set were performed to verify the proposed approach. 
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1. Introduct ion 

The training time of  an artificial neural network 
depends both on the number of  features used and on 
the size of  the training set. The number of  features 
can be reduced in a feature selection process that 
requires a certain number of  training sessions. We 
have in mind the forward and the backward feature 
selection strategies described by Devijver and Kittler 
(1982). Thus, it seems that the reduction of  the 
training set size could remarkably accelerate the 
training process and therefore also the feature selec- 
tion. 

The algorithm for the training set size reduction, 
we propose below, requires calculation of  some dis- 
tances between two objects. We have decided to use 
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the Euclidean measure. The objects represented in 
the training set may be described by different units. 
For this reason the data ought to be standardized. 
The standardization will be used only to find the 
training set of  the reduced size. However, the train- 
ing set of  the reduced size will finally contain the 
original nonstandardized data. For this purpose the 
following equation can be used: 

x[i,  j] := ( x [ i ,  j] -- rnv[ j] ) / sd[ j] ,  

where i identifies an object, j is the feature number, 
rno[ j] is the mean value of  the jth feature, and sd[ j]  
its standard deviation. The values my[j] and sd[j] 
will be derived from the training set. We will use 
this equation as it gives an equal " w e i g h t "  to each 
feature. 

The idea of  the proposed algorithm consists in the 
division of the training set into some subsets with 
use of  the standardized data. Next, these subsets are 
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replaced by their gravity centers calculated for the 
original nonstandardized data. These gravity centers 
assume the same labels as the majority of points of 
the corresponding subsets. Ties can be broken by the 
class most heavily represented in the training set. 

There are no formal methods reported in the 
literature on sample set condensation. The proce- 
dures reported are based on cluster analysis (see e.g. 
Devijver and Kittler, 1982) which has no control of 
the resulting number of condensed samples. Further- 
more the proposed algorithm is computationally 
simpler. 

2. A brief description of CSNN 

The class-sensitive neural network is a feedfor- 
ward artificial neural network which is particularly 
suitable for multi-class pattern classification. Each 
class is represented by a subnet. All subnets which 
share the same input are otherwise uncoupled. A 
typical network structure for a two-dimensional input 
vector and three classes, and with one hidden layer is 
shown in Fig. 1. The weight adjustments are made 
such that weight reinforcement is applied to the 
correct pattern class of the input vector. The control 
strategy makes use of both back-propagation and the 
correlations between the real and desired outputs. 
Experiments with artificial and real data show that 
the CSNN performs consistently better than the pop- 
ular back-propagation trained neural networks by 6 
to 10% in recognition rate. The condensed samples 
are used as the input vectors to the CSNN for 
classification. 

subnet 1 

subnet 2 

subnet 3 

input hidden output 
layer layer layer 

Fig. 1. CSNN structure. 

3. Training set condensation algorithm 

To describe our algorithm we introduce the term 
"diameter" of the set. As the diameter of the train- 
ing set (or of a subset of the training set) we will 
assume the distance between its two farthest points. 

First we wilt show how the proposed algorithm 
operates. A one-dimensional example, presented in 
Fig. 2, seems to be sufficient for this purpose. 

The training set consists of 9 points, 5 from class 
1 and 4 from class 2. Its two farthest points have 
coordinates 1 and 37. The first division corresponds 
to the straight line that passes through the point 19, 
i.e. in the middle between points 1 and 37. Now we 
have two subsets. The next division is performed for 
the subset that contains a mixture of points from two 
classes. If  more than one subset satisfies this condi- 
tion, then we divide the subset with the largest 
diameter. So, the left subset {1, 4, 7, 13, 17} will be 
divided in the second step. The subset {23, 27, 35, 
37} will be divided in the third. After the next two 
steps the fifth division will be performed. In this 
situation no subset contains a mixture of points. 
There are not two points from the different classes in 
the same subset. The mixed subsets have been ex- 
hausted. Further division can be realized now only 
for uniform (nonmixed) subsets. For instance, the 
sixth division would pass through the point 4. The 
point 4 can join to the left as well as to the right 
subset. 

Fig. 2 shows the compressed training set after five 
steps. The compressed training set is created by 
gravity centers of the obtained subsets. 

Below, we describe the proposed algorithm more 
precisely. 
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Fig. 2. A one-dimensional example for a two-class problem. 
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Algorithm 
1. Select the desidered number n d of  objects 

(points) in the reduced training set; 
2. Put n c -'= 1; ( "  := " means the same as in the 

Pascal language, nc is the current number of  
subsets of  the training set) 

3. Assume D := training set, C(1) := D and i := 1; 
4. Find two farthest points PI and P2 in the set D; 
5. Divide the set D into two subsets D~ and D 2, 

where 
D l := {P ~ D: d(P,  PI) <~ d(P,  P2)}, 
D E : = { P E D :  d(P,  P 2 ) < d ( P ,  Pl)}; 

6. n c := n c + l, C(i):= D l, C(n c):= D2; 
7. Put I 1 := {i: C(i) contains objects from two 

classes at least}, 12 :-- {i: i ~< n c} - I1; 
8. Put I := I l if I~ is non-empty else I := I2; 
9. Find the pair of  two farthest points Ql(i) and 

Q2(i) in each C(i) for i ~ I; 
10. F ind  j such that  d ( Q l ( j ) ,  Q E ( j ) )  = 

max d(Q¿(i), Q2(i)) for i ~ l ,  i.e. find a set 
C(j)  with largest diameter; 

11. Put D := C( j ) ,  P1 := QI(J) and P2 := Q2(J); 
12. If  n c < n d then go to 5; 
13. Find gravity centers G(i) for each C(i) ,  i =  

1, 2 . . . . .  rid; 
14. Assign to each G(i) the class that is most heav- 

ily represented in C(i) ,  ties break by largest 
class and further randomly. The points G(i) ,  
i -- 1, 2 . . . . .  n d, form the condensed training set. 

selected regions belonging to the following classes: 
carrots, potatoes, stubble, sugar beet and wheat. For 
each region, a set of  15 features was computed, 
including original optical and radar channels, texture 
features calculated by using the above channels and 
combinations of  optical bands. 

The following is a brief feature description. 
Features 1, 2, 3, 4, 5, 6 - the responses of  the 

optical sensor, i.e. the Daedalus sensor, for band 2, 
band 3, etc. 

Feature 7 - for the C band with H H  polarization. 
Feature 8 - response of  the radar sensor for the L 

band with HV polarization. 
Feature 9 - response of the radar sensor for the P 

band with VV polarization. 
Feature 10 - Mandelbrot texture for the C polar- 

ization HH. 
Feature 11 - Mandelbrot texture for the band C 

polarization HV. 
Feature 12 - Mandelbrot polarization for the band 

P polarization HV. 
Feature 13 - synthetic feature computed as ratio 

between band 7 and (band 5 + band 7 + band 9). 
Feature 14 - synthetic feature computed as ratio 

between band 9 and (band 5 + band 7 + band 9). 
Feature 15 - synthetic feature computed as ratio 

between band 7 and (band 3 + band 5 + band 7). 
More detailed information concerning the data set 

can be found in the paper of  Serpico and Roli 
(1995). 

4. Data set description 

The above-presented algorithm was applied to 
remote-sensing images of  the multisensorial type. 
Particularly, we considered images acquired by two 
sensors installed on an aircraft: a Daedalus 1268 
Airborne Thematic Mapper  (ATM) scanner, and a 
PLC band, fully polarimetric, N A S A / J P L  airborne 
imaging radar system. The flights took place in July 
and August 1989, respectively. The geographical 
location was the Feltwell area. The average registra- 
tion error was about 1 pixel. 

The registered ATM image was filtered by a 
linear smoothing and context-sensitive enhancement 
filter; then it was segmented by a multiband region- 
growing technique (Serpico and Roli, 1995). We 

5. Results of experiments 

We have considered a data set that contained 
8839 objects, 15 features and 5 classes. Next, we 
randomly selected 2440 objects to use as the training 
set, and the set of  the remaining 6399 objects was 
treated as the test set. Such an experiment was 
repeated ten times. In each experiment the training 
set was condensed at first into a set with 38 objects, 
secondly into a set with 76 objects, then into sets 
with 152, 305, 610 objects and finally into a set that 
contained 1220 objects. For each of  the ten experi- 
ments the CSNN was trained seven times: for the 
original set of  2440 objects and the six condensed 
sets with 1220, 610, 305, 152, 76 and 38 objects in 
each set. The condensed sets with 38, 76, 152, 305, 
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Table 1 
Results of 10 experiments with the condensed training sets 
Exp. no. Number ofobjects in ~aining respectively testsets 

2440 1220 610 305 152 76 38 
6399 6399 6399 6399 6399 6399 6399 

1 91.78 92.01 89.97 89.03 84.72 67.26 63.42 
2 94.73 93.25 91.95 89.97 84.92 63.13 59.52 
3 93.45 91.23 89.61 89.40 82.00 70.71 54.34 
4 92.86 91.37 90.25 91,03 86.00 53.29 51.85 
5 94.23 92.76 93.23 88,86 83.70 54.59 53.13 
6 94.12 92.78 89.31 91.47 83.28 75.84 76.14 
7 93.08 92.23 93.56 90.70 82.43 73.54 68.79 
8 89.30 91.67 92.66 89,83 80.47 81.08 74.09 
9 95.05 94.81 86.58 88,53 73.09 67.20 54.60 

10 94.16 9t.26 90.47 89,45 74.03 66.67 63.13 
Average 93.28 92.34 90.76 89.83 81.46 67.33 61.90 

610 and 1220 objects were found in the same com- 
putational process since the proposed algorithm pro- 
duces first the set with 38 objects, then, by continu- 
ing it, the sets with 76, 152, 305, 610 objects and, 
finally, by further continuation, the set with 1220 
objects. To create the first set of  38 objects 7 min- 
utes were necessary and an additional 5 minutes 
were sufficient to form the remaining five sets with 
38, 76, 152, 305, 610 and 1220 objects. For  compu- 
tations an IBM compatible PC 4 8 6 / 6 6  MHz was 
used. 

Table 1 contains the results for each of the ten 
experiments with seven different training sets, the 
original one and the six condensed training sets. 

The CPU time for 1220 objects in the training set 
is 85% of  that with 2440 objects in the training set, 
for 610 objects and 305 objects in the training set the 
CPU time is 80% and 60% respectively of  that with 
2440 objects in the training set. Note that with the 
training sample size reduced by a factor of  8, there is 
only a 4% decrease in the average recognition rate. 

It is worth to compare the results obtained for the 
condensed training sets and for the training sets of 
the same size randomly chosen from the original sets 
of 2440 objects. To avoid unnecessary computations 
we have constrained our experiments to the size of 
305 objects in each of  the sets. The results are 
presented in Table 2. 

We see that the condensed training set offers a 
better classification quality than the training set of 

the same size but randomly chosen from the original 
set of  2440 objects. 

Comparing the results in Table 1 and those given 
in Table 2 we notice that condensation from a 2440- 
point to a 305-point training set leads to only 3.5% 
loss of  accuracy, while a random choice of  305 
points in the training set causes on average 19.4% 
loss in accuracy. 

The same data have been used by Serpico and 
Roli (1995). They have considered another type of  

Table 2 
Results of 10 experiments for the condensed and randomly chosen 
training sets with 305 objects 
Exp. no. No. of objects in training respectively test sets 

condensed randomly chosen 
305 305 

6399 6399 
1 89.03 84.23 
2 89.97 72.70 
3 89.40 88.11 
4 91.03 73.14 
5 88.86 84.23 
6 91.47 71.64 
7 90.70 71.95 
8 89.83 70.37 
9 88.53 59.35 

10 89.45 62.81 
Average 89.83 73.85 
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artificial neural network and the k-NN classifier. The 
error rates were 86.46 and 89.85 percent, respec- 
tively. So, the CSNN used by us offers a similar 
classification quality. However, our main interest 
was sample set condensation and the relation be- 
tween the size of the condensed training set and 
classification quality. 

6. Concluding remarks 
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Sample condensation or reduction is particularly 
necessary when the data set involved is large such as 
in the remote sensing image recognition problems. A 
new algorithm is proposed in this paper and shown 
to preserve the classification accuracy quite well 
even when the training sample size reduction is by a 
factor of 8. 
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